A Survey of Methods for Moving Least Squares Surfaces

نویسندگان

  • Z.-Q. Cheng
  • Y.-Z. Wang
  • B. Li
  • Kai Xu
  • Gang Dang
  • S.-Y. Jin
چکیده

Moving least squares (MLS) surfaces representation directly defines smooth surfaces from point cloud data, on which the differential geometric properties of point set can be conveniently estimated. Nowadays, the MLS surfaces have been widely applied in the processing and rendering of point-sampled models and increasingly adopted as the standard definition of point set surfaces. We classify the MLS surface algorithms into two types: projection MLS surfaces and implicit MLS surfaces, according to employing a stationary projection or a scalar field in their definitions. Then, the properties and constrains of the MLS surfaces are analyzed. After presenting its applications, we summarize the MLS surfaces definitions in a generic form and give the outlook of the future work at last.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Technique for Image Zooming Based on the Moving Least Squares

In this paper, a new method for gray-scale image and color zooming algorithm based on their local information is offered. In the proposed method, the unknown values of the new pixels on the image are computed by Moving Least Square (MLS) approximation based on both the quadratic spline and Gaussian-type weight functions. The numerical results showed that this method is more preferable to biline...

متن کامل

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

Surfaces Generated by Moving Least Squares Methods

An analysis of moving least squares (m.l.s.) methods for smoothing and interpolating scattered data is presented. In particular, theorems are proved concerning the smoothness of interpolants and the description of m.l.s. processes as projection methods. Some properties of compositions of the m.l.s. projector, with projectors associated with finiteelement schemes, are also considered. The analys...

متن کامل

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008